Formula: 1. Etotal (z,t) (V/m) : Total eletrical field due to three infinite plane parallel current sheets, defined by Êtotal (z,t) \( = \frac{\eta_{0} J_{s1} }{ 2 }cos[\omega (t-\frac{z -d_{1} }{ c })] x̂ + \frac{\eta_{0} J_{s2} }{ 2 }cos[\omega (t-\frac{z -d_{2} }{ c })] x̂ + \frac{\eta_{0} J_{s3} }{ 2 }cos[\omega (t-\frac{z -d_{3} }{ c })] x̂ \) 2. E (z,t) (V/m) : Eletrical field due to a infinite plane current sheet, defined by Ên (z,t) \( = \frac{\eta_{0} J_{sn} }{ 2 }cos[\omega (t-\frac{z -d_{n} }{ c })] x̂, \) (n = 1, 2, 3) 3. J (t) (A/m) : A infinite plane current sheet, defined by Ĵn (z,t) \( = \ -J_{sn} cos[\omega (t-\phi_{n})] x̂, z = a_{n}, \) (n = 1, 2, 3) | Parameters: 1. \(J_s\) : Amplitude of the surface current density, (A/m) 2. \(\phi\) : Phase angle of the surface current density, (rad), 3. \(f\) : Operating frequency, (GHz), 4. \(d\) : Location of the surface current density from zero, (\(\lambda\)), 5. \(\eta_{0}\) : Instrnsic impdance of the free space, (\(\Omega\)) 6. \(c\) : Speed of light, (m/s) |