Loading [MathJax]/jax/output/HTML-CSS/jax.js
Module 5.4 Bouncing Signal in a T.-Line System w Shunt/Series Discontinuity
  • cm
    {R} =
    50Ω
    {Z_{01}} =
    60Ω
    {T_1} =
    μs
    {Z_{03}} =
    60Ω
    {T_3} =
    μs
    Z_S
    \delta (t)
    Load
    ZL
    1.7
    11.7
    11.7
    11.7
  •  –  o  +  ←  ↓  ↑  → 
    t
    =
    0.00μs
    V
    =
    0.00000
    V
    750
    1000
    500
    1250
    250
    1500
    0
    0
    0.5
    -0.5
    1
    -1
Z_S = (Ω)
Z_L = (Ω)
Z_{01} = (Ω)
L_1 = (m)
Z_{03} = (Ω)
L_3 = (m)
R = (Ω)
V_p = 10^{8} (m/s)

Formula:

1. \Gamma_S: 訊號源端的反射係數
    \Gamma_S = \frac{Z_S-Z_{01}}{Z_S+Z_{01}}
2. \Gamma_L : 負載端的反射係數
    \Gamma_L = \frac{Z_L-Z_{03}}{Z_L+Z_{03}}
3. In the condition of Series :
    \Gamma_{13} = \frac{R+Z_{03}-Z_{01}}{R+Z_{03}+Z_{01}};    \tau_{13} = (1+\Gamma_{13}) \times \frac{Z_{03}}{R+Z_{03}}
    \Gamma_{31} = \frac{R+Z_{01}-Z_{03}}{R+Z_{01}+Z_{03}};    \tau_{31} = (1+\Gamma_{31}) \times \frac{Z_{01}}{R+Z_{01}}
4. In the condition of Shunt :
    Z_{1} = \frac{1}{R^{-1}+Z_{01}^{-1}};    Z_{3} = \frac{1}{R^{-1}+Z_{03}^{-1}}
    \Gamma_{13} = \frac{Z_{3}-Z_{01}}{Z_{3}+Z_{01}};      \tau_{13} = 1+\Gamma_{13}
    \Gamma_{31} = \frac{Z_{1}-Z_{03}}{Z_{1}+Z_{03}};      \tau_{31} = 1+\Gamma_{31}
5. V(z,t)
    V_1^+ = \frac{Z_{01}}{Z_{01}+Z_S};               V_1^- = \frac{Z_{01}}{Z_{01}+Z_S} \times \tau_{13} \times \Gamma_L \times \tau_{31}
    V_2^+ = \frac{Z_{01}}{Z_{01}+Z_S} \times \tau_{13};    V_2^{++} = \frac{Z_{01}}{Z_{01}+Z_S} \times \Gamma_{13} \times \Gamma_S \times \tau_{13}

Parameters:

1. Z_S : Source impedance (Ω)
2. Z_L : Load impendance (Ω)
3. Z_{01}, Z_{03} : Characteristic impendance of the transmission lines (Ω)
4. L_1, L_3 : Length of the transmission lines (m)
5. R : 不連續處的串聯/並聯電阻 (Ω)
6. C :電磁波的傳遞速度 (m/s)