Processing math: 45%
Module 4.5 TDR Simulator
  • cm
    {R} =
    50Ω
    {Z_{01}} =
    60 Ω
    {T_1} =
    2.00e+0 μs
    {Z_{03}} =
    60 Ω
    {T_3} =
    3.00e+0 μs
    Load
    ZL
    1.7
    11.7
    11.7
    11.7
  •  –  o  +  ←  ↓  ↑  → 
    t
    =
    0.00 μs
    20
    15
    25
    10
    30
    5
    35
    0
    0
Z_L = (Ω)
Z_{01} = (Ω)
L_1 = (m)
Z_{03} = (Ω)
L_3 = (m)
R = (Ω)
v_p = 10^{8} (m/s)

Formula:

1. T_1 = L_1 / v_p ;  T_2 = L_3 / v_p
2. \Gamma_L : Load reflection coefficient
    \Gamma_L = \frac{Z_L-Z_{03}}{Z_L+Z_{03}}
3. In the condition of Series :
    \Gamma_{13} = \frac{R+Z_{03}-Z_{01}}{R+Z_{03}+Z_{01}};     \tau_{13} = (1+\Gamma_{13}) \times \frac{Z_{03}}{R+Z_{03}}
    \Gamma_{31} = \frac{R+Z_{01}-Z_{03}}{R+Z_{01}+Z_{03}};     \tau_{31} = (1+\Gamma_{31}) \times \frac{Z_{01}}{R+Z_{01}}
4. In the condition of Shunt :
    Z_{1} = \frac{1}{R^{-1}+Z_{01}^{-1}};     Z_{3} = \frac{1}{R^{-1}+Z_{03}^{-1}}
    \Gamma_{13} = \frac{Z_{3}-Z_{01}}{Z_{3}+Z_{01}};       \tau_{13} = 1+\Gamma_{13}
    \Gamma_{31} = \frac{Z_{1}-Z_{03}}{Z_{1}+Z_{03}};       \tau_{31} = 1+\Gamma_{31}

Parameters:

1. Z_L : Load impedance (Ω)
2. Z_{01}, Z_{03} : Characteristic impedances of the transmission lines (Ω)
3. L_1, L_3 : Lengths of the transmission lines (m)
4. R : Series/shunt resistance at discontinuity (Ω)
5. v_p :Speed of EM wave in the transmission line (m/s)